
Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 3

Problem 1. Let H be a graph and let n > |V (H)| be an integer. Suppose that there is a

graph on n vertices and m edges that does not contain a copy of H, and let k > n2 logn
m

. Show

that the edges of Kn can be coloured with k colours such that there is no monochromatic

copy of H.

Solution. Let G be a graph with n vertices and m edges which does not contain H as

a subgraph. Let G1, . . . , Gk random copies of G inside Kn. That is, we define uniformly

random bijections f1, . . . , fk : V (G) → V (Kn) and let Gi be fi(G).

For any edge e ∈ E(Kn), let the colour of e be the smallest i such that e ∈ Gi. If such i does

not exist, let us call the colouring a failure.

Now let us estimate the probability that the colouring is a failure. The colouring fails

at e if no subgraph Gi contains e. Since each Gi contains m edges out of the
(
n
2

)
edges

of Kn, the probability that a fixed Gi does not contain e is 1 − m

(n2)
. Since the various

Gi’s are independent, the probability that no Gi contains e is

(
1− m

(n2)

)k

≤ exp(−mk

(n2)
) ≤

exp(−2mk
n2 ) < exp(−2 log n) = n−2. Hence, the probability that there exists an edge e ∈

E(Kn) which is not contained in any Gi is less than 1, so with positive probability we get a

colouring of Kn.

Now each colour class is a subgraph of some Gi, so it is a subgraph of G, therefore no colour

class contains a copy of H.

Problem 2. Show that there is a positive constant c > 0 such that for any positive integer

n there exists a graph G = (V,E) such that

• |V | = n,

• |E| ≥ cn8/7,

• G does not contain C8 as a subgraph.

Solution. Let H be a random graph G(n, p). We take p = αn−6/7. Denote by X the
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number of copies of C8 in H. Then

E[X] ≤ n8p8 = (αn1/7)8 = α8n8/7,

where the inequality follows as there are at most n8 potential copies of C8 (n ways to pick

the first vertex in the graph, n ways for the second vertex, etc.), and each potential copy is

in H with probability p8 (because C8 has eight edges). Also

E[e(H)] =

(
n

2

)
p ≥ n2

3
· αn−6/7 =

α

3
n8/7.

We form a graph H ′ by removing one edge from each copy of C8. We thus remove at most

X edges from H, so the number of edges in H ′ satisfies

E[e(H ′)] ≥ E[e(H)−X] = E[e(H)]− E[X] ≥ (
α

3
− α8)n8/7.

Take, say, α = 1/2 and pick an instance of H such that e(H ′) ≥ (α
3
− α8)n8/7 ≥ (1/12)n8/7.

Then H ′ satisfies the above requirements with c = 1/12.

Problem 3. A collection F of subsets of [n] is called k-independent if for every k distinct

sets F1, . . . , Fk ∈ F , all of the 2k intersections
⋂k

i=1Gi are non-empty, where each Gi is either

Fi or its complement [n]\Fi. Prove that for k ≥ 6 there is a k-independent family of subsets

of [n] of size at least
⌊
en/(k2

k)
⌋
(exponentially large!).

Solution. Letm =
⌊
en/(k2

k)
⌋
. Let S1, S2, . . . , Sm be independent, uniformly random subsets

of [n]. Let us estimate the probability that S1, . . . , Sk are k-independent. The probability

that
⋂k

i=1 Si is empty is (1− 1
2k
)n since for each 1 ≤ t ≤ n, the probability that t ̸∈

⋂k
i=1 Si

is 1− 1
2k
.

Since Si and [n] \ Si have the same distribution, we also have P(
⋂k

i=1Gi = ∅) = (1 − 1
2k
)n

whenever each Gi is either Fi or [n] \ Fi. Hence, by the union bound, the probability that

S1, . . . , Sk are not k-independent is at most 2k(1− 1
2k
)n ≤ 2ke−n/2k .

Similarly, for any 1 ≤ i1 < i2 < · · · < ik ≤ m, the probability that Si1 , Si2 , . . . , Sik are

not k-independent is at most 2ke−n/2k . The set {S1, . . . , Sm} is not k-independent if some

k-subset of it is not k-independent. By the union bound, this has probability at most(
m
k

)
· 2ke−n/2k ≤ mk

k!
2ke−n/2k < mke−n/2k = (me−n/(k2k))k ≤ 1. So with positive probability

{S1, . . . , Sm} defines a k-independent family of size
⌊
en/(k2

k)
⌋
.

Problem 4. Let G = (V,E) be a graph on n vertices, with minimum degree δ > 1. We say

that a set U ⊆ V is dominating if every vertex v ∈ V \ U has at least one neighbour in U .
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Show that G has a dominating set of size at most log(δ+1)+1
δ+1

n.

Solution. Let 0 < p < 1, to be defined later. Let A be a set of vertices, chosen randomly

by putting every vertex of G in A with probability p, independently. Let B be the (random)

set of vertices that are not in A and that do not have a neighbour in A. Note that A ∪B is

a dominating set. Moreover,

E[|A|] = np

E[|B|] =
∑

u∈V (G)

(1− p)d(u)+1 ≤ n(1− p)δ+1.

(The first equality in the expectation of B follows because u being in B means that u and

all of its neighbours are not in A. The next inequality follows from the minimum degree

condition.) Put p = log(δ+1)
δ+1

. Then

E[|A ∪B|] ≤n
(
p+ (1− p)δ+1

)
≤ n

(
p+ e−p(δ+1)

)
=n

(
log(δ + 1)

δ + 1
+ e− log(δ+1)

)
=

1 + log(δ + 1)

δ + 1
· n.
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